[ML] MNIST_Hand written code
2025. 8. 9. 18:01ㆍpython/ML
- This code is based on Michael Nielsen’s implementation and runs on the MNIST handwritten digit recognition dataset.
- The key components of this code are the class structure, feedforward process, stochastic gradient descent (SGD), and backpropagation.
The code is as follows:
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
import numpy as np
import random
def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))
class Network():
def __init__(self, sizes):
self.num_layers = len(sizes) # 3
self.sizes = sizes
self.biases = [np.random.randn(y,1) for y in sizes[1:]]
self.weights = [np.random.randn(y,x) for x,y in zip(sizes[:-1], sizes[1:])]
def feedforward(self, a):
for b, w in zip(self.biases , self.weights):
a = sigmoid(np.dot(w,a) + b)
return a
def SGD(self, training_data, mini_batch_size, epochs, eta,test_data = None):
if test_data: n_test = len(test_data)
n = len(training_data)
for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size] for k in range(0,n,mini_batch_size)
]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print(f"Epoch {j} : {self.evaluate(test_data)} / {n_test}")
else:
print(f" Epoch : {j} complete.")
def backprop(self, x, y):
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
gradient for the cost function C_x. ``nabla_b`` and
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
to ``self.biases`` and ``self.weights``."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)
def update_mini_batch(self, mini_batch, eta):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x,y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x,y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w - (eta / len(mini_batch)) * nw for w,nw in zip(self.weights, nabla_w)]
self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, nabla_b)]
def evaluate(self, test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return (output_activations-y)
'python > ML' 카테고리의 다른 글
| [ML_8] Ensemble : Voting , Bagging , Boosting(+) (0) | 2025.08.22 |
|---|---|
| [ML] MNIST_Hand Digit with CrossEntropy and Matrix for (0) | 2025.08.12 |
| [ML] Bayesian Concept learning (0) | 2025.08.04 |
| [Probability] Bayes Rule (0) | 2025.08.03 |
| [Linear_algebra] Null space (0) | 2025.08.01 |